Mixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications
نویسندگان
چکیده
We study two mixed robust/average-case submodular partitioning problems that we collectively call Submodular Partitioning. These problems generalize both purely robust instances of the problem (namely max-min submodular fair allocation (SFA) Golovin (2005) and min-max submodular load balancing (SLB) Svitkina and Fleischer (2008)) and also generalize average-case instances (that is the submodular welfare problem (SWP) Vondrák (2008) and submodular multiway partition (SMP) Chekuri and Ene (2011a)). While the robust versions have been studied in the theory community Goemans et al. (2009); Golovin (2005); Khot and Ponnuswami (2007); Svitkina and Fleischer (2008); Vondrák (2008), existing work has focused on tight approximation guarantees, and the resultant algorithms are not, in general, scalable to very large real-world applications. This is in contrast to the average case, where most of the algorithms are scalable. In the present paper, we bridge this gap, by proposing several new algorithms (including those based on greedy, majorization-minimization, minorization-maximization, and relaxation algorithms) that not only scale to large sizes but that also achieve theoretical approximation guarantees close to the state-of-the-art, and in some cases achieve new tight bounds. We also provide new scalable algorithms that apply to additive combinations of the robust and average-case extreme objectives. We show that these problems have many applications in machine learning (ML). This includes: 1) data 1 ar X iv :1 51 0. 08 86 5v 2 [ cs .D S] 1 6 A ug 2 01 6 Wei, Iyer, Wang, Bai, Bilmes partitioning and load balancing for distributed machine algorithms on parallel machines; 2) data clustering; and 3) multi-label image segmentation with (only) Boolean submodular functions via pixel partitioning. We empirically demonstrate the efficacy of our algorithms on real-world problems involving data partitioning for distributed optimization of standard machine learning objectives (including both convex and deep neural network objectives), and also on purely unsupervised (i.e., no supervised or semi-supervised learning, and no interactive segmentation) image segmentation.
منابع مشابه
Mixed Robust/Average Submodular Partitioning
We investigate two novel mixed robust/average-case submodular data partitioning problems that we collectively call Submodular Partitioning. These problems generalize purely robust instances of the problem, namely max-min submodular fair allocation (SFA) [8] and min-max submodular load balancing (SLB) [15], and also average-case instances, that is the submodular welfare problem (SWP) [16] and su...
متن کاملRobust Submodular Observation Selection
In many applications, one has to actively select among a set of expensive observations before making an informed decision. For example, in environmental monitoring, we want to select locations to measure in order to most effectively predict spatial phenomena. Often, we want to select observations which are robust against a number of possible objective functions. Examples include minimizing the ...
متن کاملSubmodular Optimization with Submodular Cover and Submodular Knapsack Constraints
We investigate two new optimization problems — minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require ...
متن کاملDistributionally Robust Submodular Maximization
Submodular functions have applications throughout machine learning, but in many settings, we do not have direct access to the underlying function f . We focus on stochastic functions that are given as an expectation of functions over a distribution P . In practice, we often have only a limited set of samples fi from P . The standard approach indirectly optimizes f by maximizing the sum of fi. H...
متن کاملSelecting Observations against Adversarial Objectives
In many applications, one has to actively select among a set of expensive observations before making an informed decision. Often, we want to select observations which perform well when evaluated with an objective function chosen by an adversary. Examples include minimizing the maximum posterior variance in Gaussian Process regression, robust experimental design, and sensor placement for outbrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015